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In recent years, a critical understanding of the sustainable urban 
environment has become central to many urban studies, leading numerous 
scholars to employ geospatial tools and techniques to examine the 
sustainability of growing cities in the developing world. In this study, the 
Colombo district where the capital city of Sri Lanka is located, was selected 
with the prospect of monitoring the impacts of urbanization on 
environmental sustainability. The study uses the spectral indices of remote 
sensing, including the Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Built-Up Index (NDBI), Land Surface Temperature 
(LST), and Environmental Criticality Index (ECI) to detect the aspects of 
urbanization and environmental sustainability of the study area. The 
results show that there has been a dramatic increase in environment 
criticality from 1997 to 2008, and a slight decrease indicated from 2008 to 
2017, coinciding with the government urban planning initiatives. However, 
the decline of environmental sustainability of the city center and along the 
transport corridors could be identified in the context of this study. Finally, 
by drawing attention of the landscape and land use planners, the study 
emphasizes the aspects that should be considered in future urban planning. 
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1 Introduction  

Urbanization is a spatial and demographic process that 
refers to people and buildings' concentration in an area 
known as a city (Clark, 1982; Scott and Storper, 2015; 
Thapa and Murayama, 2011). The recent statistics indicate 
the arrival of a tremendous wave of urban growth in 
history, making cities the key nexus in the people and 
nature relationship (Estoque and Murayama, 2015; UN, 
2018). In 2018, urban centers were hosting over 55% of 
the global population, and nearly 70% of the world's 
population is projected to live in urbanized cities in 2050 
(United Nations, 2018). The continuous growth in the 
number and size of urban areas has created many 
challenges in maintaining human welfare in the cities, 
while preserving the natural environment, both locally and 
globally (Haase et al., 2014; Subasinghe et al., 2016). 

Unsustainably planned urbanization processes can lead to 

negative socio-economic and environmental consequences 
(e.g. low quality of life, environmental degradation, and 
unsatisfactory level of water and air quality) (Dahiya, 2012; 
Estoque and Murayama, 2015). Of all human activities, 
urbanization is considered to create the most evident 
impacts on the earth, in terms of greenhouse gas emissions 
and land-use changes, which directly leads to temperature 
rise in urban areas than surrounding suburban or rural 
areas, creating a plethora of challenges on the 
sustainability of urban environment (Estoque and 
Murayama, 2017; Ranagalage et al., 2017; Wang et al., 
2018). 

Most recent studies have extensively employed remote 
sensing technology in capturing the spatial patterns of 
urbanization and its impacts on the environment (Ayanlade 
and Howard, 2019; Estoque and Murayama, 2017; Estoque 
et al., 2017; Madanian et al., 2018; Wang et al., 2018; Zhang 
et al., 2017). Notably, the advances in remote sensing 
technology such as cost-effectiveness with broad area 
coverage, easy collection of data over various scales, 
convenience in processing and analysis, etc., have 
encouraged its usage in environmental analytics (GrindGIS, 
2016). The indices developed through remote sensing 
technology provide a wide range of information to 
understand the different environmental conditions on the 
earth's surface (Chen et al., 2006; Estoque and Murayama, 
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2015; Guha et al., 2018; Ranagalage et al., 2017). 
Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Buildup Index (NDBI), and 
Normalized Difference Water Index (NDWI) are the most 
commonly used and well-developed indices used in land 
surface characteristics analyses (Sekertekin and 
Zadbagher, 2021; Zhang et al., 2009). Later, by improving 
and combining these indices, several secondary indices 
such as modified Normalized Different Vegetation Index 
(mNDVI), modified Normalized Difference Buildup Index 
(mNDBI), and modified Normalized Different Water Index 
(mNDWI), etc. have been developed in the field of remote 
sensing (Bhatti and Tripathi, 2014; Xu, 2008). These 
indices can be employed to interpret the landscape's 
characteristics in a specific area (Estoque and Murayama, 
2015; Ranagalage et al., 2017; Zhang et al., 2018). NDVI, 
NDBI, and NDWI are primarily used to determine the 
vegetation, water bodies, and the built-up area in a selected 
land surface, respectively (Macarof and Statescu, 2017). 
Although these are their primary usages, these indices 
could be developed to understand the landscape 
composition comprehensively (Estoque and Murayama, 
2015; Ranagalage et al., 2017).  

Among the remote sensing satellite data, the Landsat 
images are the most commonly used and reliable imagery 
tools that have provided the longest temporal records 
about the earth's surface (Huang et al., 2016). Many studies 
employed the Landsat images in land surface temperature 
(LST) calculation, which is one of the essential parameters 
in climate change, evapotranspiration, urban climate, 
vegetation monitoring, and other thermal analyses 
(Ibrahim and Rasul, 2017; Li et al., 2013). The knowledge of 
LST is useful to examine how human activities alter the 
natural environment (Estoque et al., 2017). It is an 
accepted fact that the decrease in green spaces and the 
increase of human-made surfaces increase the LST in any 
area (Estoque and Murayama, 2015; Ranagalage et al., 
2017). A positive difference in LST between an urban 
environment and a rural area is called the Urban Heat 
Island (UHI) (Estoque et al., 2017; Ranagalage et al., 2017; 
Zhang et al., 2017). The UHI effects have been attributed to 
having negative impacts on cities' environmental 
sustainability (Chen et al., 2006; Guha et al., 2018; Mallick 
et al., 2013). 

Spatial sciences play a key role in the strengthening of 
environmental sustainability (Alshuwaikhat and Aina, 
2006). The increasing number of studies have brought the 
application of spatial technologies as a part of spatial 
sciences to the forefront of sustainability-related studies 
(Senanayake et al., 2013; Xu and Coors, 2012). 
Environmental sustainability in cities requires achieving a 
balance in environmental protection, economic 
development, and urban society's social well-being (Riffat 
et al., 2016). Urbanized communities change their living 
style environment through their land, water, and energy 
consumption. In turn, the balance of the living atmosphere 
has been negatively affected, leading to problems in the 
urban population's health and quality of life (PRB, 2004). In 
such a context, detecting the urban environment's 
criticality spatiotemporally is essential to address urban 
sustainability-related issues (Sasmito and Suprayogi, 2018; 

Senanayake et al., 2013). Previous studies have shown that 
the Environmental Criticality Index (ECI) is an efficient 
method in determining an urban environment's criticality 
spatiotemporally (Ranagalage et al., 2017; Senanayake et 
al., 2013). Characterizing the environment's criticality 
through urban-rural gradient provides a comprehensive 
indication of how the sustainability of urban areas varies 
spatially through an urban landscape (Ranagalage et al., 
2017).  

Colombo district of Sri Lanka ɀ the country's capital city, 
shows a mixture of urban and rural land-use patterns 
(Divigalpitiya et al., 2007; Subasinghe et al., 2016). During 
the past two decades, the Colombo district has developed 
as the country's cradle of power, which accounted for more 
than 80% of its industrial outputs and about 50% of its 
Gross Domestic Product (GDP) (Emmanuel, 2005; 
Subasinghe et al., 2016). As a result, the entire Colombo 
district experiences several challenges in balancing its 
rapid urban development and protecting its environmental 
sustainability. However, limited studies have addressed the 
environmental sustainability of Colombo city and its 
surrounding under the land-use changes due to 
urbanization (Senanayake et al., 2013; Subasinghe et al., 
2016). Hence, the main objective of this study is to monitor 
the impact of urban land use changes on the environmental 
sustainability of the Colombo district using geospatial tools 
and techniques. The study employs remotely sensed data 
and various geospatial approaches, including urban-rural 
gradient, LST, and spectral indices to achieve its objective. 
In our discussion, the policy changes that could be taken to 
reduce the environmental stress are heightened based on 
the finding of this study. 

2 Study Area, Methodology, and Index Mapping  

2.1 Study Area  

Sri Lanka is a tropical island nation in South Asia with ~ 
65,610 km2 of land area, ~ 21 million population, and  
25 administrative districts  (DCS, 2012; Sangakkara and 
Frossard, 2016). The Colombo district (Fig. 1), is the 
administrative, industrial, and commercial hub of Sri 
Lanka, located on the west coast of the country facing the 
Indian Ocean, containing all government and private 
sectors` headquarters. The most recent census report 
(2012) indicates that the Colombo district's total 
population is 2.3 million (DCS, 2012; Subasinghe et al., 
2021). It occupies an approximate area of 700 km2 in flat 
terrain situated in coastal plains topographically. The 
landscape of the district is a mosaic of urban and rural land 
usage patterns (Divigalpitiya et al., 2007; Subasinghe et al., 
2016). The district's urban core, Colombo city, the 
country's commercial capital, has been expanding towards 
the inland rapidly in all directions. 

Historical unplanned urbanization and current rapid urban 
and population growth can be seen throughout the district, 
particularly the Colombo city area's environmental 
sustainability is being challenged by various ongoing and 
forthcoming developments. As the hub of the country's 
prosperity, the Colombo district, and its heart, Colombo city 
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Fig. 1: (a) Map of South Asia showing the location of the Study area; (b) Colombo district and its immediate surrounding districts;  
(c) Landsat images used in this study displayed in a false-color composite. 

 

has been focused on multiple economic, industrial, and 
social development initiatives (Van Horen, 2002). Among 
them, infrastructure developments such as highways, 
residential and commercial constructions are dominant in 
the district, threatening its livable atmosphere (Subasinghe 
et al., 2016). 

Climatically, the average annual air temperature for the 
year is about 28 °C and the average annual rainfall is about 
2,230 mm (Herath et al., 2016). The average temperature of 
the warmest month, April , is 29°C (Climate-data.org). The 
coolest month is January, with an average temperature of 
27 °C (Climate-data.org; Ranagalage et al., 2017). The 
month with the highest precipitation on average is October 
with 353 mm of rainfall, while the least rainfall on average 
is in February at an average of 63 mm (Climate-data.org; 
Subasinghe et al., 2021).  

2.2 Data  

We used Landsat-5 images captured on 7 February 1997 
and 4 November 2008, and Landsat-8 image captured on 
13 January 2017 (Table 1). The Landsat data sets were 
downloaded through United States Geological Survey 
(USGS) Earth Explorer website 
(https://earthexplorer.usgs.gov/). According to the USGS 

description, the spatial resolution of the multispectral 
bands of Landsat-5 TM data is 30 m and the spatial 
resolution of its Thermal band (band 6) is 120 m. Due to 
this reason, we resampled the thermal band of Landsat-5 
into a 30 m spatial resolution. The spatial resolution in 
multispectral bands of Landsat-8 data is also 30 m. Its 
panchromatic band (band 8) has a 15 m spatial resolution 
and thermal bands (band 10 and 11) have 100 m spatial 
resolution. Due to the difference in spatial resolution, we 
resampled the thermal band of Landsat-8 into a 30 m 
spatial resolution.  

 

Table 1: Description of Landsat images acquired. 

 

Sensor Acquisition Date  Time (GMT)  Season 

Landsat-5 TM 7 February 1997 04:18:38 Dry 

Landsat-5 TM 4 November 2008 04:37:19 Dry 

Landsat-8 
OLI/TIRS 

13 January 2017 04:54:05 Dry 
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2.3 Index Mapping  

The indices such as NDVI, NDBI, and NDWI are widely used 
in the studies which focus on the urban land use mapping 
and LST calculations (Estoque and Murayama, 2017; 
Macarof and Statescu, 2017; Ranagalage et al., 2017; Guha 
et al., 2018).  

2.3.1 Normalized Difference Vegetation Index (NDVI)  

The difference between near-infrared (NIR) (with strongly 
reflecting vegetation) and red light (with absorbing 
vegetation) is used in NDVI calculations, which indicate the 
nature of vegetation (Eq. 1) (Ranagalage et al., 2017; Zhang 
et al., 2017). Accurate assessment of vegetation cover is 
essential in the measurement of sustainability in cities 
(Chen et al., 2021). In the NDVI image, negative or close to 
zero values usually indicate the water bodies, and low 
positive values are associated with bare soil, while larger 
positive values indicate vegetation (Albarakat and Lakshmi, 
2019). 

 

ὔὈὠὍ                                                                             (1)  

 

where; 
”  = band 4 (for Landsat TM ɀ wavelength 0.76ɀ0.90 µm) 
and band 5 (for Landsat OLI ɀ wavelength 0.85ɀ0.88 µm) 
and 
”  = band 3 (for Landsat TM ɀ wavelength 0.63ɀ0.69 µm) 
and band 4 (for Landsat OLI ɀ wavelength 0.64ɀ0.67 µm). 

2.3.2 Normalized Difference Built -Up Index (NDBI)  

The difference between mid-infrared (MIR) and NIR used 
in NDBI calculation, is one of the commonly used indices 
for analysis of urban pattern or built-up area (Eq.2) 
(Estoque and Murayama, 2015; Guha et al., 2018; Macarof 
and Statescu, 2017). In NDBI image, negative values usually 
indicate the water bodies, and zero values indicate the 
vegetation, and positive values indicate the built -up. The 
concentration of built-up features such as buildings, roads, 
and runaways by exceeding the carrying capacity of 
landscape, negatively impacts to the sustainability of the 
cities (Dissanayake et al., 2019). These also retain a higher 
level of heat, which alleviates computability and 
environmental balance in the urban areas (Smith and 
Levermore, 2008).  

 

ὔὈὄὍ                                                                           (2)  

 

where ”  = Band 5 (for Landsat-5 TM) and Band 6 (for 
Landsat 8) and ”  = Band 4 (for Landsat TM) and Band 5 
(for Landsat 8) (Kikon et al., 2016).  

In this study, we used mNDWI to identify the water bodies. 
The threshold values of water bodies were manually 
calibrated using ancillary data. 

2.3.3 Modifi ed Normalized Different Vegetation 
Index (mNDVI),  

We used mNDWI to detect the water bodies of the area. The 
mNDWI was calculated using (Eq. 3).  

 

άὔὈὠὍ 
 

 
                                                                (3)  

 

where  
”  = Band 2 (for Landsat-5 TM ɀ wavelength 0.52-

0.60µm) and Band 6 (for Landsat 8 ɀ wavelength 0.53-
0.59µm) and ”  = Band 5 (for Landsat TM ɀ wavelength 
1.55ɀ1.75 µm) and Band 5 (for Landsat 8 ɀ wavelength 
1.57-1.65µm).  

2.3.4 Land Surface Temperature (LST) Retrieval  

The retrieval of LST is essential in determining 
environmental sustainability (Ranagalage et al., 2017; 
Zhang et al., 2017). As a standard method of retrieving LST, 
we convert raw Landsat imaÇÅÓȭ ÄÉÇÉÔÁÌ ÖÁÌÕÅÓ ÔÏ ÒÁÄÉÁÎÃÅ 
values (Chander et al., 2009; Estoque et al., 2017; Zhang et 
al., 2018). Subsequently, the radiance values were 
converted into satellite brightness temperature. The 
resampled thermal bands, which contain satellite 
brightness temperatures expressed in degrees Kelvin, were 
ÕÓÅÄ ÔÏ ÄÅÒÉÖÅ ÔÈÅ ÌÁÎÄ ÓÕÒÆÁÃÅ ÅÍÉÓÓÉÖÉÔÙ ɉʀɊ ÖÁÌÕÅ ɉ%ÑȢτɊȢ 

 

‐ άὖ ὲ                                                                                     (4)  

 

where m = (ʀ Ϻ ʀɊ Ϻ ɉρ Ϻ ʀ) Fʀ and n = ʀ Ϲ ɉρ Ϻ ʀ) Fʀ, 
where ʀ and ʀ are the soil emissivity and vegetation 
emissivity, respectively. In this study, we used m = 0.004 
and n=0.986 according to Sobrino et al. (2004). The 
proportion of vegetation (ὖ) was derived from NDVI  
(Eq. 5). 

 

ὖ ὔὈὠὍ ὔὈὠὍȾὔὈὠὍ ὔὈὠὍ    (5)  

 

where NDVI is the Normalized Difference Vegetation Index 
(Eq.1). We used the minimum (ὔὈὠὍ) and maximum 
(ὔὈὠὍ) values of the NDVI in calculating ὖ. Once the 
emissivity images were derived for each year, the 
emissivity-corrected LST values were retrieved (Eq. 6) 
(Artis and Carnahan, 1982; Weng et al., 2004). 

 

ὒὛὝὝȾρ ‗ ὝȾ„Ὅὲ‐                                                     (6)  

 

where Ὕ= at-satellite brightness temperature in degrees 
Kelvin; ‗ = wavelength of emitted radiance (‗=11.5) µm for 
Landsat-5 TM band 6, and 10.8 µm for Landsat-8 OLI/TIRS 
band 10; 

” Ὤ ὧȾ„ (1.438×10-ς Í+Ɋȟ ʎ Ѐ "ÏÌÔÚÍÁÎÎ ÃÏÎÓÔÁÎÔ 
(1.38×10-ςσ *Ⱦ+Ɋȟ ÈЀ 0ÌÁÎÃËȭÓ ÃÏÎÓÔÁÎÔ ɉφȢφσφϼ ρπ-34 Js),  
Ã Ѐ ÖÅÌÏÃÉÔÙ ÏÆ ÌÉÇÈÔ ɉςȢωωψ ϼ ρπψ ÍȾÓɊȟ ʀ ÉÓ ÔÈÅ ÌÁÎÄ ÓÕÒÆÁÃÅ 
emissivity (Sobrino et al., 2004). The retrieved LST values 
were converted from Kelvin to degrees Celsius (°C). 
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2.4 Environment Criticality Index (ECI)  

To identify the environmentally critical areas, we derived 
the ECI for each time point. The ECI is the ratio between 
LST and NDVI (Eq. 7) (Ranagalage et al., 2017; Senanayake 
et al., 2013).  

 

ὉὅὍ  

 
                                             (7)  

 

where ὉὅὍ  Environmental Criticality Index is based 

on LST and availability of vegetation cover; 
ὒὛὝ   and ὔὈὠὍ   are stretched 
values of LST and NDVI. We used the histogram 
equalization method in standardizing the LST values and 
NDVI values. In calculating the ECI, the water bodies which 
were derived by the mNDWI were excluded.  

2.5 Urban -rural Gradient Analysis  

4ÈÅ ÃÏÎÃÅÐÔ ÏÆ Ȱ5ÒÂÁÎȱ ÉÓ ÆÕÚÚÙ ÁÎÄ ÉÎÃÏÎÓÔÁÎÔ (Subasinghe 
et al., 2021; Taubenböck et al., 2012; Zhang et al., 2014). 
One country can define urbanity based only on built 
infrastructure (e.g. the existence of paved streets or water 
supply systems), while another may define urbanity by 
population density, livelihoods (e.g. percentage of 
agricultural workers), economic characteristics, 
administrative function (for example regional districts or 
capitals), and/or administrative limits  (Christenson et al., 
2014). A sizable number of remote sensing studies have 
used built-up land use derived from NDBI to identify the 
urban areas (Hegazy and Kaloop, 2015; Moghadam and 
Helbich, 2013). The concept of gradient is commonly 
applied in landscape ecology (Boone et al., 2012; Bunting et 
al., 2002; Subasinghe et al., 2016). In this study, we 
performed the gradient analysis to identify the urban-rural  
gradient of LST, built-up (derived using NDBI), and the 
environmentally critical areas (ECI) for each time point 
(1997, 2008, and 2017). The multiple ring buffers were 

created from the city center with a distance interval of 
2,000 m (2 km). The changes of these average values were 
compared with the gradient distance to the city center. The 
city center of Colombo district was defined encircling the 
&ÏÒÔ #ÌÏÃË ÔÏ×ÅÒ ÁÔ ÔÈÅ ÂÁÓÅ ÎÅÁÒ ÔÈÅ ÐÒÅÓÉÄÅÎÔͻÓ ÈÏÕÓÅϺÔÈÅ 
zero-ÒÏÁÄ ÄÉÓÔÁÎÃÅ ÐÏÉÎÔ ɉφЈ υφᴂ υᴃ .ȟ χωЈ υπᴂ στᴃ E). 
Literature revealed that a city center is defined using a 
landmark place of a city by representing the highest urban 
concentration (Wang, 2006).  

2.6 Linear Regression Analysis  

,34ȭÓ ÒÅÌÁÔÉÏÎÓÈÉÐÓ ×ÉÔÈ .$6) ÁÎÄ .$") ×ÅÒÅ ÁÎÁÌÙÚÅÄ ÂÙ 
fitting a simple linear regression (SLR) equation. For the 
analysis, 500 sample points were randomly created, and 
then the LST, NDVI, and NDBI values were extracted 
corresponding to the random points to calculate the SLR. 

3 Results  

3.1 Spectral Indices   

In Fig. 2, we present the maps of NDVI and NDBI for 1997, 
2008, and 2017.The NDVI values ranged from - 1.00 to 0.84 
in 1997, -0.34 to 0.78 in 2008, and -0.32 to 0.77 in 2017. 
The mNDVI was used only for the exclusion of water bodies 
in the ECI calculation process.  

In order to interpret the NDVI results, the classification 
developed by Zaitunah et al. (2018) has been used. 
According to the Zaitunah et al. (2018), NDVI values 
 < 0 = non-vegetation; 0-0.15 = lowest dense;  
0.15-0.3 = lower dense; 0.3-0.45 = dense; 0.45-0.6 = higher 
dense; >0.6 = highest dense. The NDVI values of non-
vegetation mainly represent the water bodies, while lowest 
dense, lower dense of vegetation represent the urban and 
urban-mixed landscape, where they are mainly 
accumulated in the western part of the study area.  
 

 

 
 

Fig. 2: NDVI (top)  and NDBI (bottom) maps of Colombo district in, left to right, 1997, 2008, and 2017.  
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Fig. 3: LST maps of Colombo district in, left to right, 1997, 2008, and 2017(bottom) . 

 

Additionally, the dense, higher dense, and highest dense 
vegetation is mainly distributed in the eastern side of the 
area in all the time points.  

NDBI values further strengthen the results derived by 
NDVI. The NDBI values ranged from -1.00 to 0.42 in 1997, -
1.00 to 0.51 in 2008 and -0.72 to 0.63 in 2017. The high 
NDBI value indicates urban and mixed-urban landscapes. It 
shows the spatial diffusion of urbanization from the 
western part where the center of Colombo city is situated, 
to the eastern part of the Colombo district. It is noteworthy 
that the increasing density of urban landscape towards 
northern  and southern directions, along the coastal belt 
and along the transport lines, becoming significant.  

3.2 Land Surface Temperature  

The LST maps of Colombo district for 1997, 2008, and 2017 
are shown in Fig. 3.  

On February 7, 1997 (04:18:38 GTM), the LST in the study 
area ranged from 21.5 °C to 34.9 °C with a mean value of 
26.5 °C. On November 4, 2008 (04:37:19 GTM), the LST 
ranged from 16.1 °C and 38.7 °C with a mean value of 27.4 
°C. On January 13, 2017 (04:54:05 GTM), the LST ranged 
from 20.2 °C and 33.8 °C with a mean value of 27.0 °C. This 
result shows that the Colombo district experienced an 
increase of mean LST by 0.5 °C from 1997 to 2017. 
However, it is noted that this area experienced a decrease 
in mean LST by 0.4 °C from 2008 to 2017.  

In 1997, the proximity center of Colombo city and 
Ratmalana airport are identified  as main hotspots (>30 °C), 
while along the coastal belt a higher LST (around 29 °C- 
30 °C) was observed, compared to the adjoining areas. In 

addition, the surrounding areas of Oruwala Steel 
Corporation, Panagoda industrial zone, Seethawaka export 
processing zone, and Slawa army camp areas could be 
identified as being outside the hotspot from the main urban 
cluster of Colombo district. Meanwhile, Labugama ɀ 
Kalatuwawa forest reserve area shows the lowest LST 
among other areas of the Colombo district.  

In 2008, the Colombo district experiences an increasing 
spatial coverage of high LST areas. Mainly, the high LST 
values diffuse from the main urban cluster toward the 
eastern area, where previously low LST values were 
observed, while the LST along the coastal belt increase. 
Specifically, the size of previous LST hotspots around 
Oruwala steel corporation, Panagoda industrial zone, and 
Seethawaka export processing zone have amplified. In 
addition to that, new hotspots have emerged such as 
Hanwella and Padukka,  

In 2017, the spatial coverage of high LST areas was further 
increased while the size of high LST hotspots outside 
augmented. However, the places including Seethawaka 
botanical garden, Diyawanna-oya Park where recent urban 
beatification planning was introduced, showed a slight 
decrease in LST. However, areas associated with recent 
development projects such as NSBM green university 
project and Athurugiriya housing project have experienced 
an increasing trend of LST.  

3.3 Relationship of LST with NDVI and NDBI  

Fig. 4 shows the correlation of LST with NDVI and NDBI for 
all three-time points.  
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Fig. 4: Scatter plots between, left to right, LST and NDVI, and LST and NDBI, in, top to bottom, 1997, 2008, and 2017. 

 

LST negatively correlate with NDVI, while they were all 
statistically significant (p< 0.001) across all the time points 
as disclosed by the results. In 1997, the beta value of -0.455 
describes that the impact of NDVI changes on LST is 
moderate. The regression analysis between LTS and NDBI 
in 1997 indicates a strong and positive correlation (0.68) 
between LST and NDBI. In 2008, the correlation between 
LST and NDVI is strong and negative (-0.63), while the 
correlation between LST and NDBI proves to be strong and 

positive (0.76). In 2017, the correlation between LST and 
NDVI is strong and negative (-0.68), while it is strong and 
positive (0.82) between LST and NDBI. It can be noted that 
the decrease of vegetation cover and increase of the built 
up areas have intensely impacted on amassing of the LST in 
2008 and 2017. The R2show an increasing trend from 1997 
to 2017. This indicates that the explanatory or predictive 
power of NDVI on the spatial variations of LST became 
stronger when urbanization increased. Similar to the 
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Fig. 5: Environmental Criticality in, left to right, 1997, 2008, and 2017 (bottom). 

 

 
 

Fig. 6: Patterns of, left to right, NDVI, NDBI, and LST along the urbanɀrural gradient in 1997, 2008, and 2017. 

 

relationship between NDBI and LST, the relationship 
between NDBI and LST strengthened from 1997 to 2017 
due to the cumulative trend of urbanization in the area. 

As previous studies have shown, regression analysis results 
also indicate that the spatial pattern of NDBI values is 
highly correlated with the spatial pattern of LST values.  

3.4 Changes in Environmental Criticality  

The derived ECI maps of Colombo district in 1997, 2008, 
and 2017 are shown in Fig. 5. The results show that the 
environment criticality areas are mainly concentrated in 
close proximity to the city center (where the CBD is 

located) in all the time phases. The environmentally critical 
areas were 1%, 4%, and 3% of the total landscape in 1997, 
2008, and 2017, respectively. Although there was a 
dramatic increase in environmental criticality from 1997 to 
2008, a slight decrease was indicated from 2008 to 2017.  

3.5 Gradient Analysis  

Fig. 6 shows the spatial distribution of NDVI, NDBI, LST, 
and ECI along the gradients of the city center of Colombo 
district.  

The gradient analysis shows that in terms of less vegetation 
cover, concentration of built-up area, and higher level of 


